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Purpose: Breast mass segmentation is a prerequisite step in the use of computer-aided tools
designed for breast cancer diagnosis and treatment planning. However, mass segmentation remains
challenging due to the low contrast, irregular shapes, and fuzzy boundaries of masses. In this work,
we propose a mammography mass segmentation model for improving segmentation performance.
Methods: We propose a mammography mass segmentation model called SAP-cGAN, which is
based on an improved conditional generative adversarial network (cGAN). We introduce a superpixel
average pooling layer into the cGAN decoder, which utilizes superpixels as a pooling layout to
improve boundary segmentation. In addition, we adopt a multiscale input strategy to enable the net-
work to learn scale-invariant features with increased robustness. The performance of the model is
evaluated with two public datasets: CBIS-DDSM and INbreast. Moreover, ablation analysis is con-
ducted to evaluate further the individual contribution of each block to the performance of the net-
work.
Results: Dice and Jaccard scores of 93.37% and 87.57%, respectively, are obtained for the CBIS-
DDSM dataset. The Dice and Jaccard scores for the INbreast dataset are 91.54% and 84.40%, respec-
tively. These results indicate that our proposed model outperforms current state-of-the-art breast mass
segmentation methods. The superpixel average pooling layer and multiscale input strategy has
improved the Dice and Jaccard scores of the original cGAN by 7.8% and 12.79%, respectively.
Conclusions: Adversarial learning with the addition of a superpixel average pooling layer and multi-
scale input strategy can encourage the Generator network to generate masks with increased realism
and improve breast mass segmentation performance through the minimax game between the Genera-
tor network and Discriminator network. © 2020 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.14671]

Key words: breast mass segmentation, generative adversarial network, multiscale features, super-
pixel pooling

1. INTRODUCTION

Breast cancer is one of the leading causes of cancer deaths in
the world.1 Early screening, diagnosis, and treatment are con-
sidered to be the main approaches to improving the survival
rates of breast cancer. Mammography is currently the most
reliable method for diagnosing breast cancer, and it is widely
used to detect abnormalities in the breast.

Breast masses, in relation to microcalcifications and archi-
tectural distortion, are the most important type of breast can-
cer abnormalities because they represent a very high
possibility of malignant tumors.2 However, the interpretations

of mass by radiologists are subject to substantial inter- and
intra-observer variations, which may lead to missed cancers
as well as overdiagnosis.3 Therefore, computer-aided diagno-
sis (CAD) systems are now widely used to assist radiologists
as a second reader in detecting and diagnosing breast
masses.4 An important tasks of breast CAD systems is to
accurately segment masses from breast images. However,
detecting and segmenting masses are challenging because
they have a low contrast, irregular shapes, and fuzzy bound-
aries.5

Mass segmentation is a decisive process in the breast can-
cer CAD system. The accuracy of mass classification is
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highly dependent on automatic segmentation algorithms. In
addition, the automatic segmentation of a mass is essential
for further quantitative and qualitative analyses. Some loose
correlations exist between the mass morphology information
obtained from segmentation results and the molecular sub-
type of breast cancer,6,7 which is the key to identifying the
best oncological treatment for breast cancer.

In this work, we propose an improved conditional genera-
tive adversarial network (cGAN) for breast mass segmenta-
tion in digital mammograms to solve the above problems. We
introduce a superpixel average pooling layer into the Genera-
tor (G) network of cGAN, which utilizes superpixels as a new
pooling layout to improve boundary segmentation. In addi-
tion, we adopt a multiscale input strategy in the G and Dis-
criminative (D) networks to promote the networks to learn
scale-invariant features with increased robustness. Experi-
ments show that this network structure can promote G to gen-
erate masks with increased realism and improve the mass
segmentation performance through the minimax game
between G and D.

The major contributions of this work are as follows:

• We propose SAP-cGAN, a novel mammography mass
segmentation architecture that utilizes superpixels as a
new pooling layout to form a superpixel average pool-
ing layer and joints it to the cGAN. This work also pro-
vides the first combination of the superpixel average
pooling layer and the cGAN for use in mammogram
images and effectively improves the performance of
breast mass segmentation.

• We also adopt a multiscale input strategy that promotes
the network to learn robust features of different scales
to solve the recognition problem caused by the incon-
sistent sizes of masses.

• We use two public datasets for the quantitative and
qualitative evaluation of the performance of the pro-
posed SAP-cGAN architecture, which outperforms
the current state-of-the-art breast mass segmentation
methods.

2. RELATED WORK

Given the complexity of the morphology and boundary of
breast masses, accurate segmentation has become a difficult
and hot issue in breast cancer CAD systems.8 Traditional
methods, such as conditional random field (CRF)9 and active
contour model10 were widely used in early studies on breast
mass segmentation. Dhungel et al.11 adopted CRF and struc-
tured support vector machine to explore the use of deep belief
networks to segment breast masses in structured prediction
models. Kozegar et al.12 considered the seed position as the
only prior condition and proposed a two-stage segmentation
method that combines the shape information of a mass. The
adaptive region growing algorithm is used to estimate the
mass boundary roughly, and a new geometric edge-based
deformable model is introduced to refine the mass boundary.

However, the setting of the initial parameters of these tradi-
tional methods relies excessively on experience. This reliance
usually leads to subjective diagnosis. In addition, most of
these methods cannot realize the end-to-end automatic seg-
mentation of a mass, and manual intervention is often
required during segmentation.

Since the full convolutional network (FCN)13 was first
proposed, semantic segmentation methods have made great
progress in deep learning and have been widely used in medi-
cal image segmentation. Li et al.14 combined densely con-
nected U-Net with attention gates and proposed a fully
automatic breast mass segmentation method based on deep
learning. The method presented better segmentation perfor-
mance than U-Net, attention U-Net, and DenseNet. Cheng
et al.15 used a spatial enhanced rotation aware network to
avoid mass misclassification in the background area to facili-
tate separating a mass from a complex background. Thus far,
different extensions of deep learning have been applied in the
detection, segmentation, and classification of breast
masses.16–18 The results obtained by these methods are more
accurate than those obtained by traditional methods. How-
ever, network training requires additional pixel-level annota-
tion data and training costs.

Dong et al.19 used the GAN20 network for medical image
segmentation for the first time. The image-to-image method
improves the accuracy and computational efficiency of seg-
menting the liver from three-dimensional (3D) computed
tomography (CT) scans. This method can perform powerful
learning by using less data than traditional deep learning seg-
mentation networks. Pang et al.21 proposed a new framework
based on GAN, CTumorGAN, which achieved superior seg-
mentation performance on the CT datasets of various dis-
eases. Singh et al.22 proved the advantages of applying the
modified GAN model (cGAN) to the mass segmentation task
in digital mammograms.

Superpixels are a popular method that combines spatial
priors with various computer vision problems.23 Superpixel
generation is an over-segmentation process that can retain
highly detailed boundary information. We have reason to
believe that this characteristic is helpful for detecting masses
with unclear and spiculated boundaries. Kwak et al.24 added
a superpixel pooling layer to the classification network and
achieved remarkable performance in the weakly supervised
semantic segmentation task of natural images. In recent years,
superpixel pooling has been extensively studied in weakly
supervised segmentation or natural image classification.25,26

As far as we know, however, it has not been applied for the
segmentation of breast masses in digital mammograms.

3. MATERIALS AND METHODS

3.A. Problem formulation

Assume that kth mass image Ik is present in digital
mammogram datasets, and Mk is the corresponding seg-
mentation ground truth (a binary mask of the mass area). Ik
and Mk form the paired training data ∑n

i¼1ðIk ,MkÞ. The
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goal of the GAN is to learn the mapping from the random
noise vector z to the output mask image M, that is, z → M.
By contrast, the cGAN learns a mapping from the observed
image I (conditional information) and random noise vector
z to M,27 {I,z} → M. The addition of conditional informa-
tion prompts the network to generate the output M̂k related
to the input image Ik.

The cGAN framework based on the superpixel average
pooling proposed in this work, namely, SAP-cGAN, is shown
in Fig. 1 : SAP-cGAN is composed of two parts: G and Dis-
criminator D. G is trained to generate a mask image that is
similar to the ground truth to confuse D, whereas D tries its
best to distinguish the generated image M̂k from the ground
truth Mk. In such a minimax game, our goal is to improve the
accuracy of mass segmentation by making the mask image
generated by G increasingly similar to the ground truth seg-
mentation mask and making D work hard to identify the
“fakes” generated by G.

3.B. Superpixel average pooling layer

We use simple linear iterative clustering (SLIC) to gener-
ate superpixels in the mass images. It can iteratively cluster
the pixels on the basis of local structural features and the spa-
tial relationship between the pixels and merge the pixels with
similar low-level features.23

3.B.1.. Superpixel generation

Input mass image I∈RW�H is denoted, where W and H
denote the width and height, respectively. Q cluster center Ei, i
∈ {1, 2, 3,. . .,Q} is initialized uniformly on the mass image

I. Ei is moved to the lowest gradient position that is in a 3 × 3
neighborhood to prevent the cluster center from falling on the
edge of the image. For each pixel p in the 2K × 2K neighbor-
hood of Ei (K ¼ ffiffiffiffiffiffiffiffiffi

P=Q
p

, P is the total number of pixels in I),
the distance DEip between Ei and p is calculated by Eq. (1),
and the pixel p is classified to the corresponding Ei in accor-
dance with the minimum distance principle.

DEip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dgray

2þ dspace=K
� �2

m2

q
, (1)

where dgray ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðIi� I jÞ

p
represents the distance in gray

space; Ii and Ij are the gray values of the two pixels, respec-

tively; dspace ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj� xiÞ2þðyj� yiÞ2

q
denotes the Euclidean

distance; and m is a tightness parameter that controls the rela-
tive relationship between gray-scale similarity and spatial
similarity.

Superpixel generation is an oversegmentation process, and
the mass images will be divided into several superpixels. The
pixels inside each superpixel have similar structural features.
Therefore, the superpixel average pooling layer is used to
reduce the dimensionality of the feature map inside the super-
pixel to the same features. After the feature map is subjected
to mapping and × reduction through the superpixel average
pooling, internal redundant information can be removed such
that the network focuses on the information difference
between classes. This approach will be helpful for locating
masses with irregular shapes or fuzzy boundaries.

3.B.2.. Superpixel average pooling layer

The process of superpixel average pooling is shown in
Fig. 2. After a series of operations such as convolution,

FIG. 1. Proposed SAP-cGAN framework for mass segmentation in digital mammogram. [Color figure can be viewed at wileyonlinelibrary.com]
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pooling, and upsampling, the mass image I obtains the fea-
ture map X∈RW�H�C, where W and H represent the width
and height of the image, and C represents the number of
channels. The oversegmentation result generated by the SLIC
is a single-channel map S∈LW�H , where L = [1,Q] indicates
the label of each superpixel, and Q is the number of superpix-
els. Si = Q indicates that the pixel i belongs to the Qth super-
pixel. As shown in Fig. 2, the output Y of the superpixel
pooling layer is a matrix with size C × Q : Y∈RC�Q that can
be denoted as

Yc,q ¼ avgfXc,iji : Si ¼Qg, (2)

where avg{�} is the average pooling function.
In backward propagation, the gradient calculation formula

for superpixel average pooling layer is

δYc,q

δXc,i
¼

1
NðSiÞ , if Si ¼Q and c0 ¼ c

0 , othewise ,

0
@

1
A (3)

where N(Si) is the number of pixels in the superpixel with
label Q.

The superpixel average pooling layer is very similar to the
average pooling of the neural network. The difference is that
the superpixel average pooling layer is performed in the irreg-
ular region that is determined by the superpixel shape. The
superpixel map contains the original low-level shape prior
information of the mass image, which has a good effect on
refining the boundary of the irregular mass.

3.C.. The SAP-cGAN architecture

3.C.1.. Generator network

Figure 3 shows the suggested architectures for G. In G, we
improve the cGAN architecture used in the work of Singh
et al.22 For the encoder of G, we adopt a multiscale input
strategy28 to obtain highly effective and scale-invariant fea-
ture representation such that the network can exhibit
improved performance when locating masses with different
sizes. The input images are resized to 1/8, 1/4, and 1/2 of its
original size, and a convolution layer with 3 × 3 kernels is
used to extract features from each scale. Given that the fea-
ture maps extracted from different scales have different sizes,
they must be upsampled to the size of the feature map

extracted from the original image before aggregating multi-
scale features. After all the features are aggregated, they are
input into the encoder.

The detailed settings of the encoder and decoder are
shown in Fig. 3. In addition to the last decoder layer
(DF8), skip connections are added between the encoder and
decoder layers such that the decoder can combine the fea-
tures of the lower layers when upsampling to avoid losing
necessary detailed information. In addition, dropout is
applied at the first three decoding layers (DF1, DF2, and
DF3) to avoid overfitting. The feature map gradually recov-
ers to the size of the original image after multiple upsam-
pling in the decoder. The superpixel average pooling layer
described in Section 3.B is combined with the DF8 layer.
The DF8 layer is matched with the input superpixel map of
the superpixel average pooling layer for calculation. The
superpixel average pooling layer aggregates features inside
of each superpixel by exploiting an input superpixel map as
the pooling layout. According to Eq. (2), the output of the
superpixel average pooling layer becomes a C × Q matrix
(C = 32 in the current SAP-cGAN architecture). A single
C × 1 feature vector is assigned to each superpixel which
will be classified by the fully connected classification layer
following the superpixel average pooling layer. After calcu-
lating the classification score of each superpixel, the tensor
of W× H ×1 is obtained. The tanh activation function is
then applied to generate a binary segmentation mask of the
breast mass.

3.C.2.. Discriminator network

The architecture of D is shown in Fig. 4. As shown in
Fig. 4, D is composed of five encoding layers. The input of D
is the original mass image, the ground truth mask, and the
“fake” mask generated by G. Similar to the multiscale input
of the G, the mass images and the masks are resized into the
same three scales. Sigmoid is applied at the last layers, and
the output of the network is 0.0–1.0, which represents the
degree of complete credibility (0.0 represents completely
fake).

In accordance with the symbols presented in Section 3.B,
the loss function of G is

LG ¼EI,M,zð�logðDðI,GðI,zÞÞÞÞþ λEI,M,zðLDiceÞ, (4)

FIG. 2. Illustration of the superpixel pooling layer.
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where D(I,G(I,z)) and G(I,z) are introduced as the output of
D and G, λ is an empirical weighting factor, and LDice is the
Dice loss29 between M and M̂.

The loss function of the D is

LD ¼EI,M,zð�logðDðI,MÞÞÞþEI,M,zð�logð1�DðI,GðI,zÞÞÞÞ:
(5)

When optimizing G and D, the optimizer makes G work
hard to generate a mask similar to M̂, and D attempts to dis-
tinguish the “fake” M̂ among them. During this adversarial
learning process, the network will output a binary mask with
increased clarity and realism.

3.D.. Dataset and processing

3.D.1.. CBIS-DDSM

The CBIS-DDSM dataset is the curated breast imaging
subset of DDSM,30 which contains mass and calcification
data. It consists of 861 mass cases that including the medio-
lateral oblique (MLO) and cephalo-caudal (CC) views of the
mammograms. Among the images in the dataset, 912 images
are marked as benign and the remaining 784 are marked as
malignant. The location and type of suspicious areas in the
mass image are marked as the ground truth by experienced
radiologists. The CBIS-DDSM is divided into training and

FIG. 3. Generator network architecture of the proposed SAP-cGAN. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 48 (3), March 2021
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testing subsets31; the former consists of 1318 images, and the
latter contains 378 images.

3.D.2.. INbreast

The INbreast dataset was created by the Breast Research
Group, INESCPorto, Portugal.32 It contains images of 115
patients for a total of 410 images, including images of masses,
calcifications, and other abnormalities. For mass segmenta-
tion, it specifically provides 106 images with corresponding
masks. Therefore, we select these 106 images as the external
validation data of the proposed model.

Similar to other researchers working on mass segmenta-
tion,33 we extracted 256 × 256 image regions centered at
masses in the two datasets to build our dataset. The affine
transformation is used to rotate the training images by 90∘

and 180∘ and to flip the images along the horizontal axes to
augment the dataset to enable the network to learn features
with increased richness and avoid overfitting. That is, the
training dataset contains 5272 mass images. The two test sets
comprise 378 mass images from CBIS-DDSM and 106 mass
images from INbreast.

The prepared data are then fed into SAP-cGAN, and a bin-
ary mask of the mass is generated during adversarial learning
between G and D. We apply morphological operations to
postprocess the mask to remove small speckles. As shown in
Fig. 5, small speckles surrounded by red boxes in the

generated mask are present. These speckles can be filtered
out after morphological operations.

3.E.. Experiment and parameter settings

We quantitatively and qualitatively analyze the proposed
method to evaluate the effectiveness of our method compre-
hensively. For the quantitative analysis, FCN,13 U-Net,34 Seg-
Net35 and other two mass segmentation models (called
SegModel_CRF11 and SegModel_cGAN22) are compared
with the proposed SAP-cGAN method. We implement these
models for comparison and retain the experimental setup in
their original studies. In addition, we compare our method
with the previously described state-of-the-art mass segmenta-
tion methods.36,37 We also perform ablation analysis on SAP-
cGAN to verify the effectiveness of the superpixel average
pooling layer and multiscale input strategy integrated in SAP-
cGAN. On the basis of the original cGAN, different compo-
nents are sequentially added until SAP-cGAN is reached.
Before the components are added, the results of the evalua-
tion metrics are recorded. In qualitative analysis, we visualize
and analyze the segmentation results of SAP-cGAN and the
above five models.

All experiments are conducted with Tensorflow frame-
work version 1.15. When using SLIC to generate superpixels,
the Dice coefficient and Jaccard index are applied to measure
the value of Q. The best effect is obtained when Q = 600.

FIG. 4. Discriminator network architecture of the proposed SAP-cGAN. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Postprocessing example. [Color figure can be viewed at wileyonlinelibrary.com]
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The network is optimized through Adam with β1 ¼ 0:5 and
β2 ¼ 0:999. The batch size is 8, and the initial learning rate is
0.0001. After 120 epochs of training, G and D obtain the best
results. For the ablation analysis, we adopt the same initial
learning rate and Adam to optimize the network during the
training process.

3.F.. Evaluation metrics

Accuracy, the Dice coefficient, the Jaccard index (i.e.,
intersection over union), sensitivity, and specificity are used
as evaluation metrics to verify the effectiveness of the pro-
posed method quantitatively.38 For mass segmentation, let G
be the ground truth mask of the mass image, and R be the
mask predicted by the network. Then, the true positive (TP)
refers to the mass region in G and R, that is, TP = G∩R,
whereas true negative (TN) is TN¼ �G∩�R. The false positive
(FP) is defined as FP¼ �G∩R, which indicates the mass
region included in R that does not belong to G. By compar-
ison, false negative (FN) is defined as FN¼G∩�R, which
denotes the real mass region missed by the model.

3.G.. Statistical analysis

The differences between results are assessed using Stu-
dent’s t-tests or Mann-Whitney U-tests for continuous vari-
ables, as appropriate. The above statistical analyses are
performed with SPSS Statistics software, version 18.0. The
two-tailed threshold of P<0.05 was considered statistically
significant.

4. RESULTS

4.A.. Comparison with Other methods

As shown in Table I, the quantitative results of SAP-cGAN
with the testing datasets from CBIS-DDSM and INbreast are

compared with those of other state-of-the-art models. The
results for the CBIS-DDSM show that our method SAP-
cGAN outperforms the compared models in terms of all eval-
uation metrics (P < 0.05). The Dice coefficient and Jaccard
index, which are two important metrics for evaluating seg-
mentation results, have been obviously improved and are
93.37% and 87.57%, respectively. Our model has also
achieved high accuracy, specificity, and sensitivity values of
98.35%, 98.46%, and 97.50%, respectively. This finding
shows that the superpixel average pooling layer and the multi-
scale input strategy promote the network to learn additional
discriminative features in the mass images. Our proposed
SAP-cGAN architecture can improve the mass segmentation
performance in digital mammograms.

The results of the mass segmentation performance on
INbreast show that the performances of U-Net, SegMo-
del_CRF and SAP-cGAN significantly decreased (P < 0.05)
because the model is trained in CBIS-DDSM and the
INbreast dataset is not used to fine-tune the network parame-
ters during testing. Although the performance of SegMo-
del_CRF on CBIS-DDSM are better than that of FCN
(P < 0.05), it has the lowest Dice and Jaccard scores on
INbreast, indicating that this model cannot learn generalized
features of masses. However, the decrease in Dice coefficient,
Jaccard index, and other metrics of SAP-cGAN for INbreast
is significantly greater than that for CBIS-DDSM (P < 0.05).
Thus, excellent segmentation performance is retained. The U-
Net obtains the highest specificity (99.05%), but its sensitiv-
ity is lower than the sensitivity of SAP-cGAN (16.92%), indi-
cating that it misses more real mass regions than the
proposed SAP-cGAN.

In addition, Table I presents a comparison between our
method and the state-of-the-art mass segmentation methods.
We directly list the metrics of the methods that were pre-
sented in their original articles because their source codes
have not yet been published. Our method outperforms other
models in terms of accuracy, sensitivity, and specificity.

TABLE I. Comparison of SAP-cGAN with other mammogram mass segmentation methods.

Dataset Methods Dice Jaccard Accuracy Specificity Sensitivity

CBIS-DDSM FCN 0.8476 0.7356 0.9340 0.9464 0.8865

U-Net 0.8748 0.7774 0.9151 0.9755 0.8104

SegNet 0.8435 0.7293 0.9265 0.9187 0.9564

SegModel_CRF 0.8640 0.7606 0.9496 0.9584 0.9083

SegModel_cGAN 0.8947 0.8094 0.9608 0.9641 0.9453

SAP-cGAN 0.9337 0.8757 0.9835 0.9846 0.9750

INbreast FCN 0.7758 0.6338 0.9296 0.9553 0.7887

U-Net 0.8868 0.7967 0.9279 0.9924 0.8079

SegNet 0.8292 0.7083 0.9528 0.9540 0.9442

SegModel_CRF 0.6813 0.5167 0.8762 0.8797 0.8566

SegModel_cGAN 0.8935 0.8075 0.9305 0.9769 0.8428

SAP-cGAN 0.9154 0.8440 0.9855 0.9863 0.9771

Tianyu et al.[37] 0.8881 0.8043 0.9145 0.9155 0.9200

Alantari et al.[36] 0.9269 0.8637 0.9297 0.9321 0.9272

Bold indicates the highest value under each evaluation metric.
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However, our model does not provide the highest Dice and
Jaccard scores, which are 1.15% and 1.97% lower, respec-
tively, than the scores of the work of Al-antari et al.36 This
difference is attributed to our use of the INbreast dataset as
an external testing set, whereas the model in the work of Al-
antari et al.36 is trained on the INbreast dataset. Moreover, the
results of the previous model are only slightly better than
those of our model, showing that our model has a certain uni-
versality.

Figure 6 shows a comparison among the performances of
our model and other five segmentation models on the same
mass image from the CBIS-DDSM testing set. The round,
oval, irregular, and lobular masses shown in Figure 6 are used
to reflect the segmentation results of the models for masses
with different shapes. The shape label is provided by the
CBIS-DDSM. For each model, we compare the segmentation
results with the ground truth mask, and mark TP(yellow), FP
(green), TN(black), and FN(red) in different colors. As
shown in Fig. 6, the FP and FN of our proposed method are
obviously lower than those of the other five models. All five
models show relatively good performance for regular masses,
such as round and oval masses. However, although our model
still shows the best performance for irregular and lobular
masses, its FN and FP values have increased. The wrong area
is mainly located near the border of the mass. This result is
due to the rough and fuzzy borders of irregular and lobular
masses that complicate accurate segmentation. Nevertheless,
compared with other models, our model has evidently

reduced FP and FN values. This characteristic also reduces
the possibility of the misclassification of the boundary
region. This result indicates that our model can achieve high
segmentation accuracy for masses with relatively smooth
boundaries and can improve the segmentation of irregular
and fuzzy masses.

These results demonstrate that SAP-cGAN has great
advantages in improving the accuracy and integrity of mass
segmentation and can learn features with increased discrimi-
nativeness and universality. These characteristics can improve
the performance of mass segmentation.

4.B.. Ablation analysis

In Table II, we present the results of the ablation analysis
for SAP-cGAN with CBIS-DDSM to demonstrate the effec-
tiveness of our proposed module. We first train an original

(a)

(b)

(c)

(d)

FIG. 6. Segmentation result of six models with the CBIS-DDSM dataset. (a) Round mass, (b) oval mass, (c) irregular mass, (d) lobular mass. From left to right:
original images and the results of the FCN, U-Net, SegNet, SegModel_CRF, SegModel_cGAN, and SAP-cGAN models. [Color figure can be viewed at wileyon
linelibrary.com]

TABLE II. Ablation analysis of the performance of the proposed method on
CBIS-DDSM.

Models Dice Jaccard Accuracy Specificity Sensitivity

BaseLine 0.8557 0.7478 0.9319 0.8941 0.9676

BaseL + MS 0.8674 0.7659 0.9341 0.9787 0.8751

BaseL + SAP 0.9076 0.8308 0.9276 0.9442 0.8678

SAP-cGAN 0.9337 0.8757 0.9835 0.9846 0.9750

Bold indicates the highest value under each evaluation metric.
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cGAN (BaseLine) without adding the superpixel average
pooling layer or mutilscale input module. Then, we add the
mutilscale input module to the G and D of the original cGAN
(BaseL+MS). Furthermore, the superpixel average pooling
layer is separately added to original cGAN(BaseL+ SAP).
Finally, the proposed model (SAP-cGAN) is constructed by
adding the superpixel average pooling layer and mutilscale
input module.

Table II presents the results of the BaseLine, BaseL+MS,
BaseL+ SAP and SAP-cGAN models. For the dataset of
CBIS-DDSM, the BaseLine yields Dice and Jaccard scores
of 85.57% and 74.78%, respectively, whereas the BaseL+MS
model exhibits a small improvement of 1.17% and 1.81%.
This improvement is obviously small because the multiscale
input module provides the model with features in different
scales such that the network can learn scale-invariant features.
Moreover, the BaseL+SAP model gives a Dice of 90.76%
and Jaccard scores of 83.08% (5.19% and 8.3% higher than
the scores provided by BaseLine). This comparison shows
that the superpixel average pooling layer can effectively
improve the performance of mass location and segmentation.
SAP-cGAN significantly improves the results compared with
BaseLine (P < 0.05), in terms of Dice score (93.37%), Jac-
card score (87.57%), accuracy (98.35%), specificity
(98.46%), and sensitivity (97.50%).

The qualitative results of the ablation analysis are shown
in Fig. 7. A small mass, a big mass and a mass with spicu-
lated boundaries are used to determine the effects of adding
different components on the segmentation results. All four
models show good performance in segmenting the small
mass partly because of its smooth boundaries. By contrast,
BaeLine evidently cannot segment the big mass as well as the
small mass. After the multiscale input module is added, the
FN value obviously decreased. Base+SAP improves the
results of boundary region segmentation of the mass with
spiculated boundaries compared with BaseLine. The SAP-

cGAN model, which is implemented by adding the super-
pixel average pooling layer and multiscale input module,
shows superior performance in segmentating these types of
masses.

5. DISCUSSION

In this study, we propose a novel network architecture for
mass image segmentation in digital mammograms. We inte-
grate two modules into the basic cGAN: a superpixel average
pooling layer and a multiscale input module. These modules
are used to provide prior boundary information and scale-in-
variant features. The performance of the proposed model is
evaluated by using mass images from two public datasets,
namely, CBIS-DDSM and INbreast. In terms of Dice and
Jaccard scores, accuracy, specificity, and sensitivity, our
model outperforms the current state-of-the-art mass segmen-
tation methods, such as FCN, U-Net, SegNet, SegMo-
del_CRF, and SegModel_cGAN. Superpixels can provide the
prior shape and boundary information of a mass, and the mul-
tiscale input module can provide features with increased
robustness. The ablation analysis results show that these two
modules can be combined with the abstract semantic infor-
mation in the cGAN, which helps generate pixel-level classi-
fication results with increased accuracy.

Although the SAP-cGAN model proposed in this paper is
superior to other segmentation models, its results for masses
with complex tissue structures are not ideal. As shown in
Fig. 8, the mass in (a) has numerous boundary burrs and
intensity inhomogeneity. In this case, our model achieves a
Dice score of 85.19% and a Jaccard score of 74.02%. For the
mass in (b) with spiculated boundaries and low contrast, our
proposed SAP-cGAN obtains a Dice score of 79.50% and a
Jaccard score of 65.98%. All the six models have failed to
segment accurately the mass with fuzzy and spiculated
boundaries, low contrast, and intensity inhomogeneity.

(a)

(b)

(c)

FIG. 7. Segmentation result of ablation analysis with the CBIS-DDSM dataset. (a) Small mass, (b) big mass, (c) mass with spiculated boundaries. From left to
right: original images and the results of the BaseLine, BaseL+MS, BaseL+SAP and SAP-cGAN models. [Color figure can be viewed at wileyonlinelibrary.com]
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Nevertheless, in contrast to the other models, our model can
provide segmentation results in such difficult situations. In
the future, we intend to optimize the performance for seg-
menting such masses and increase the accuracy of segmenta-
tion.

In addition, the present work has several limitations. In
fact, there are significant correlations between the lesions in
MLO and CC views. Our model extracts the features of each
view, and this correlation may be ignored during feature
extraction. However, the issue of how these correlations will
affect the segmentation result of breast masses is unclear. In a
follow-up study, we will explore the correlations between
mass segmentation and MLO/CC views.

6. CONCLUSIONS

We propose a mammography mass segmentation model
called SAP-cGAN, which is based on an improved cGAN.
We introduce a superpixel average pooling layer into the
decoder of cGAN, which utilizes superpixels as a pooling
layout to improve boundary segmentation. In addition, we
adopt a multiscale input strategy to enable the network to
learn scale-invariant features with increased robustness. In
mammography mass segmentation with CBIS-DDSM and
INbreast datasets, the proposed SAP-cGAN exhibits remark-
able improvements qualitatively and quantitatively over the
baseline cGAN and state-of-the-art methods. We prove that
SAP-cGAN can provide the prior shape, boundary informa-
tion, and multiscale features of a mass. These pieces of infor-
mation can be combined with the high-level abstract
semantic information in cGAN. Moreover, our model is fully
automated and can be easily integrated into breast cancer
CAD systems to assist physicians in the detection and diagno-
sis of breast cancer.
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